
Large Scale Music Recommendation

Roberto Turrin

Moviri S.p.A.

ContentWise R&D

via Schiaffino, 11 - Milan, Italy

roberto.turrin@moviri.com

Andrea Condorelli

Moviri S.p.A.

ContentWise R&D

via Schiaffino, 11 - Milan, Italy

andrea.condorelli@moviri.com

Paolo Cremonesi

Politecnico Di Milano, DEIB

p.zza Leonardo da Vinci 32

Milan, Italy

paolo.cremonesi@polimi.it

Roberto Pagano

Politecnico Di Milano, DEIB

p.zza Leonardo da Vinci 32

Milan, Italy

roberto.pagano@polimi.it

Massimo Quadrana

Politecnico Di Milano, DEIB

p.zza Leonardo da Vinci 32

Milan, Italy

massimo.quadrana@polimi.it

ABSTRACT
Recommending tracks in the music domain is typically a de-
manding task, mainly due to the size of the catalog (e.g.,
last.fm claims a 12-million track catalog) and of the events
per user (an active user can listen dozens of songs per day).
Adding further dimensions, such as contextual information,
usually makes the problem di�cult to treat.

In this work we propose an innovative approach - namely
the implicit playlist recommender (IPR) - and compare it
with two context-aware, popularity-based solutions used as
baselines. All algorithms are implemented using the Apa-
che Spark programming model to face with the large-scale
problem. The IPR model is trained using the user implicit
listening sessions and proves to outperform the two baseline
solutions when the user session is longer than 5 tracks.

Keywords
30Music dataset, large-scale, Apache Spark, Jaccard simi-
larity, music, Idomaar, context, implicit playlist, listening
session, play event

1. INTRODUCTION
Music recommender systems propose interesting music to

a specific user. Di↵erently from many other popular rec-
ommendation domains - such as video - items in the music
domain are very short (few minutes) and are not consumed
atomically, but always as a bundle of songs.

It is important noting that recommending a group of songs
has very little to share with recommending the top-N rel-
evant songs to a user. In accordance with the definition
proposed by Cunningham et. al [6], we focused on music

playlist recommendations, being a playlist a group of songs
relevant with respect to a certain context, where the strict

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WOODSTOCK ’97 El Paso, Texas USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

listening order does not necessarily matter. The user con-
text strongly a↵ects the music playlist consumption. Un-
fortunately, contextual information is usually missing and
di�cult to measure.
We overcome to such limitation by using the user current

listening session as a proxy to the user context (in particular
to his intent). In fact, regardless the user global preferences
(e.g., preferred music genres), whether he starts listening to
a certain kind of songs, he is indirectly expressing a strong,
temporary preference. Consequently, the next song to sug-
gest to such user has to be somehow aligned (e.g., similar
genres, same theme, etc.) with the tracks listened in the
current session. User listening sessions form indeed a rich
and reliable set of implicit playlists that can be exploited
to recommend new tracks relevant to the current listening
session. The main steps of this solution consist of (i) identi-
fying the user listening sessions from the atomic play events
to create the implicit playlists and (ii) matching the user cur-
rent listening session to find the relevant implicit playlists,
in accordance to a defined similarity metric (see Section 5).
As described in Section 3, we processed all the collected

play events of 45K users in the last year (31M events) on
a 5.6M-item catalog, defining 2.7M sessions. Therefore, for
each recommendation, the current session of the target user
has to be compared with all the extracted implicit playlists.
The best matching playlists are aggregated in order to iden-
tify the track(s) to recommend.
Given the problem size, the computation is particularly

demanding and has been implemented using the Apache
Spark1 Python APIs (PySpark) for a scalable and distributed
processing. Similarly, a set of experiments has been per-
formed using Idomaar as framework for the evaluation of
the recommendation quality, whose core functions are im-
plemented according to the Spark programming model.
All experiments have been executed on Amazon AWS

EC2 instances, creating a 9-node cluster with an aggregated
power of 72 cores and 540GB RAM.

Outline.
The rest of the paper is structured as follows. An overview

of existing approaches is summarized in Section 2. Section 3
presents the dataset, while Sections 4 and 5 provide the
details about the implemented baselines and proposed solu-

1
https://spark.apache.org/

tion, respectively. The experiments are presented and de-
scribed in Section 6. Finally, the conclusions and future
works are drawn in Section 7.

2. BACKGROUND
Music recommender systems are typically implemented to

suggest to users either (i) top-n recommendations, i.e., a
limited set of tracks, albums, or artists [12] that are believed
to be appealing for them [9] or (ii) an ordered list of tracks
or artist (i.e., playlist recommendations) [1, 2].

In this work we focus on presenting to a user a sequence of
tracks, referred to as playlist . An updated list of solutions
can be found in Bonnin and Jannach’s survey [3]. Among
the top performing algorithms, they mention Same Artist
Greatest Hits (SAGH) and Collocated Artist Greatest Hits
(CAGH), which we have used as baselines (see Section 4).

Ragno et al. [11] started from the consideration that the
more frequently two tracks are played one after the other,
the more similar they are. They proposed to use “editorial
playlists” to build a graph where every node is a track and
every weighted edge represents the similarity ratio among a
couple of nodes: the recommendation is generated through
a Random Walk in this graph.

A more recent work is presented by Dzuba and Bugay-
chenko [7]: they mined the user listening behavior to iden-
tify frequent patterns and build playlists, further optimized
with respect to track diversity. Hariri et al. [8] tried a similar
approach focusing on the next-artist recommendation prob-
lem: they built a graph and used a Markov Chain model to
recommend the next artist. A completely di↵erent approach
is described in [1], where playlists are generated throughout
a 4-step Case-Based Reasoning problem. Finally, Chedrawy
et al. [4] used collaborative filtering to build playlists.

3. DATASET
In our experiments we used the 30Music dataset. This

dataset contains 31M play events from 45K users over 5.6M
tracks collected via Last.fm public API2 in 1 year, from 20
Jan 2014 to 20 Jan 2015 (about 4GB of uncompressed CSV
file).

Play events are grouped into user play sessions, where
each session is an ordered list of play events that are assumed
to be consequently listened without interruption. Two con-
secutive play events belong to the same session if the gap
is not larger than 800 seconds. The dataset contains 2.7M
user sessions, with an average of 11 sessions per user, each
one, in turn, composed by 11 tracks, on average.

The 30Music dataset also provides 4.1M user love pref-
erences and 57K user created playlists. Despite being of
undeniable interest for recommender systems, we have not
considered explicit feedback from users in our experiments.
We focused our attention on implicit feedbacks only - i.e.,
the user play events and play sessions - since they are the
most challenging factors in terms of size.

4. BASELINE ALGORITHMS
In this section we describe SAGH and CAGH, two algo-

rithms proposed in the literature in the settings of music rec-
ommendation [3] that we used as baselines. Both algorithms

2
http://www.last.fm/api

suggest popular tracks and, regardless the basic model be-
hind, they proved to outperform more complex solutions
such as Markov models, K-nearest-neighbors, frequent pat-
tern mining.

4.1 Same Artist - Greatest Hits (SAGH)
This approach [10] considers only tracks of artists that

the user has already listened to during the current listening
session. The rank of the tracks is then based on their pop-
ularity. Thus, when a recommendation is requested, the al-
gorithm searches for the top popular tracks of every listened
artist in the current session. The success of this simple algo-
rithm [3] proves the role of artist-awareness and popularity
in driving music preferences.
The core of the algorithm consists in computing the top

popular tracks (greatest hits) per artist. Using Apache Spark,
we sum the play events for each song (reduceByKey) and we
keep only sessions played more than once (filter). Finally,
for each artist, we sort the songs in decreasing play event
count in order to obtain the artist-track occurrences map.

4.2 Collocated Artists - Greatest Hits (CAGH)
This algorithm is an extension of SAGH [3]. Instead of

only considering artists just listened in the user session, it
also includes the greatest hits of the most “similar” artists.
As a measure of artist similarity, we simply apply cosine
similarity on the session-artist matrix, as typically used in
collaborative filtering.

5. IMPLICIT PLAYLIST RECOMMENDER
(IPR)

The proposed approach extracts recurrent listening pat-
terns from the user sessions and use them to generate rec-
ommendations. These listening patterns will be referred to
as implicit playlists. Given a user, we can identify two types
of listening behaviors: “explore” and “exploit”. The former
occurs when the user is searching for new songs, the latter
when a user is listening to music already known and appre-
ciated. In this work we discard the exploratory behavior as
we assume it adds noise to the system and it is not useful
in understanding the user preferences. The following steps
have been implemented to keep only the sequences of tracks
that the user likes and to generate recommendations:

1. For each user, we extract all his listening sessions and
compute the shrunk Jaccard similarity j as in (1).

2. We maintain only the user sessions if there exists at
least another session with a Jaccard similarity over the
threshold j th 2 [0, 1]. These sessions form the implicit

playlists of a user.

3. Using all the implicit playlists, we build a track-playlist
binary matrix - denoted by P - where each element
(m,n) is 1 i↵ track m belongs to the playlist n. The
training makes an intense use of Apache Spark map-
ping functions such as join and groupByKey.

4. Given a user listening session, we define the vector
pu of size equals to the total number of tracks, where
the m-th element is 1 i↵ the user played the track
m in this session. In order to give more importance
to the most recently listened tracks, the values of pu
were discounted exponentially in time with a factor w.

Finally, we multiply pu byP to obtain a relevance score
for each implicit playlist. The final recommendation
list is generated by aggregating the implicit playlists
by decreasing relevance score.

The shrunk Jaccard similarity is computed as follows:

j(S1, S2, j sh) =
|S1 \ S2|

|S1 [S2|+ j sh
(1)

where S1 and S2 are the sets of the tracks of two sessions
and j sh is the shrinkage factor used to filter out sessions
that are too short.

6. RESULTS AND DISCUSSION
We compared the proposed IPR algorithm to the two base-

line solutions (CAGH and SAGH) in terms of quality and
computing times. We used the user listening sessions avail-
able in 30Music dataset as input (Section 3), splitting them
into two groups - training and test sets, in accordance to
standard evaluation techniques for recommendation evalua-
tion (e.g., [5]). We divided sessions on a time basis: sessions
started before 21 Oct 2015 (9-month data) were included
in the training set, the more recent ones (3-month data) in
the test set. The training set has been used to bootstrap
the recommendation model, either CAGH, SAGH, or IPR.
The test set has been used to compute the recommendation
quality. For each session Si in the test set, we created the
known session Si

k and the hidden session Si
h. The Si

k set is
composed by the first s play events of Si and it is available
to the recommendation algorithm to make all the required
inference (e.g., to identify the user session). The Si

h set is
composed by all play events after the S-th event. In our ex-
periments we used s - referred to as session length - equals
to either 1, 2, 5, 10 or 20. All sessions with a number of play
events lower than the required one were excluded from the
related test.

For each session, we generate a recommendation list com-
posed by N tracks, experimenting with N = 1, 5, 10, 25.
Smaller values of N evaluate the capability of the algorithm
to catch the immediate needs of the user, while larger ones
better reflect the long-term ones (still within a single user
session). The quality has been computed in terms of recall,
as the percentage of recommended tracks that appear in the
Si
h set. The algorithm recall is obtained by averaging the

recalls of all sessions.
During evaluation it is important to consider users may

listen the same track several times within a session. To
evaluate the impact of repetitions on the recommendation
quality, we experimented both with and without repetitions

in the test set only. No filtering over repetitions was per-
formed for the training set, letting the algorithms free to
exploit all the information during their training stages.

6.1 Experiment settings
In order to manage the massive amount of data, we used

Idomaar (http://rf.crowdrec.eu/) as evaluator framework,
whose core evaluation functionalities (dataset splitting into
training, test, and ground-truth sets and quality evalua-
tion) are implemented with distributed and scalable tech-
nologies such as Apache Kafka and Apache Spark. The
main component of Idomaar is the “orchestrator”, which
is designed to manage the incoming streams of data and
messages (e.g., user-item interactions/signals, requests for

(a) Session length: 1 (b) Session length: 10

Figure 1: With repetitions in the test set.

(a) Session length: 1 (b) Session length: 10

Figure 2: Without repetitions in the test set.

recommendations, etc.), distribute them to the “computing
environment” where the recommendation models are boot-
strapped and the recommendation requests are served; fi-
nally, the output of the computing environment is sent to
the “evaluator” where they are evaluated both in terms of
quality (e.g., precision, recall, NCDG, etc.) and response
time.
The experiments have been performed on an Amazon AWS

EC2 cluster composed by 9 nodes. Each node was a r3.2xlarge
instance equipped with 8 virtual CPUs, 61 GB RAM, and
160 GB SSD, running Apache Spark 1.4.0. One of the nodes
was elected to cluster master and was provisioned as on-
demand instance, the others worked as cluster slaves and
were provisioned as spot instances. Practically, there were 8
nodes dedicated to computation and 1 to orchestrating the
process, for a total of 72 virtual CPUs, 540GB RAM, and
1.4TB SSD.
We tuned algorithms’ hyper-parameters on an indepen-

dent 10% subset of the users in the dataset. In the end, we
configured SAGH and CAGH so that the number of great-
est hits per author was equal to 100 and 50, respectively.
In addition the author similarity threshold used by CAGH
was set to 0.4. As for the IPR, we configured j sh = 5,
j th = 0.1, and w = 0.7.

6.2 Recommendation quality
Figure 1 shows the performance of each algorithm for ses-

sion lengths 1 and 10, i.e., recommendations are provided
to users when they have listened to only 1 and 10 tracks re-
spectively. Repeated tracks were not removed from the test
sessions in these experiments. The performance of SAGH
and CAGH are almost equal, with a small advantage for
CAGH for large N values. IPR always significantly outper-
forms the baselines for N � 5, with di↵erences ranging from

20% to 70%. With lower values of N , the baselines still pro-
vide better results for small user session lengths (s). The
di↵erence w.r.t. the baselines is even clearer when repeated
tracks are filtered out from the test set, as reported in Fig-
ure 2. In the extreme case the user session is composed by
one track, the baselines clearly outperform IPR. However,
when more information is available (i.e., s > 1), IPR is the
clear winner.

IPR su↵ers from extreme cold-start situations, i.e., when
only few information is available. In these conditions, IPR
does not have the necessary support to correctly infer the
implicit playlist for the user. Popularity-based algorithms -
like SAGH and CAGH - are not a↵ected by this issue and
have better performance. However, as the user interacts
with the system and provides additional feedback, the “triv-
ial” popularity criterion fails. In such condition the more
sophisticated criterion at the ground of IPR clearly better
matches user tastes and provides higher quality recommen-
dations.

Moreover, IPR has been proven to be superior to baselines
for longer recommendation lists. This shows that IPR is
able to provide higher quality recommendation with a lower
number of recommendation requests w.r.t. baselines. We
believe this is due to the intrinsic capability of IPR to cap-
ture track co-consumption patterns, which are highlighted
only in longer recommendation lists. SAGH and CAGH are
still too biased by popularity for being able to capture such
patterns e↵ectively.

6.3 Computing time
We extracted the computing times in training and gener-

ation of the recommendation lists for each tested algorithm
by analyzing the execution logs of Apache Spark. No sig-
nificant di↵erences in computing times were noticed among
the di↵erent experimental conditions.

SAGH and CAGH run respectively in about 24 and 35
minutes. Their execution times where mainly dominated
by the stage in which artists’ popularity is counted along
sessions. The additional overhead of CAGH w.r.t. SAGH
is due to the quadratic nature of the artist-artist similarity
computation.

Surprisingly, IPR generated recommendations in 18 min-
utes, with a 1.3x and 2x improvement w.r.t. SAGH and
CAGH. We believe these improvements, especially against
CAGH, are due to the intrinsic flexibility of IPR, which is
able to generate a model through a single pass over the input
data and with no need of external metadata, such as artist
identifiers.

Finally, it is important to point out that configurations of
the tuning parameters, especially the similarity thresholds
for CAGH and IPR, may lead to significantly di↵erent com-
puting times and response qualities. Algorithm configura-
tions were chosen according to the best speed/quality trade-
o↵ we found during the hyper-parameter tuning phase.

7. CONCLUSIONS
In this work we developed IPR, a new playlist recommen-

dation algorithm, and compared it against two of the best
state-of-the-art recommendation algorithms. All algorithms
have been e�ciently implemented in the Apache Spark pro-
gramming framework. IPR outperforms the state-of-the-art
baselines with longer user sessions. This can be explained
by the fact that IPR better recognizes longer and recurrent

patterns in user listening behavior. In addition, we improved
the running times w.r.t. the baselines, making it feasible to
be deployed in larger production environments.

Acknoledgements.
The research leading to these results was performed in the
CrowdRec project, which has received funding from the Eu-
ropean Union Seventh Framework Programme FP7/2007-
2013 under grant agreement n.610594.

8. REFERENCES
[1] C. Baccigalupo and E. Plaza. Case-based sequential

ordering of songs for playlist recommendation. In
Advances in Case-Based Reasoning, pages 286–300.
Springer, 2006.

[2] G. Bonnin and D. Jannach. Evaluating the quality of
playlists based on hand-crafted samples. 14th Int.

Society for Music Information Retrieval, 2013.
[3] G. Bonnin and D. Jannach. Automated generation of

music playlists: Survey and experiments. ACM
Computing Surveys (CSUR), 47(2):26, 2014.

[4] Z. Chedrawy and S. S. R. Abidi. A web recommender

system for recommending, predicting and personalizing

music playlists. Springer, 2009.
[5] P. Cremonesi, Y. Koren, and R. Turrin. Performance

of recommender algorithms on top-n recommendation
tasks. In Proceedings of the Fourth ACM Conference

on Recommender Systems, RecSys ’10, pages 39–46,
New York, NY, USA, 2010. ACM.

[6] S. J. Cunningham, D. Bainbridge, and A. Falconer.
More of an art than a science: Supporting the creation
of playlists and mixes. In Proceedings of 7th

International Conference on Music Information

Retrieval, pages 240–245, Victoria, Canada, 2006.
[7] A. Dzuba and D. Bugaychenko. Mining users

playbacks history for music recommendations. In
Machine Learning and Data Mining in Pattern

Recognition, pages 422–430. Springer, 2014.
[8] N. Hariri, B. Mobasher, and R. Burke. Context-aware

music recommendation based on latenttopic sequential
patterns. In Proceedings of the sixth ACM conference

on Recommender systems, pages 131–138. ACM, 2012.
[9] N. Liu and S. Hsieh. Intelligent music playlist

recommendation based on user daily behavior and
music content. Advances in Multimedia Information

Processing-PCM â

˘

A ,e, pages 671–683, 2009. From
Duplicate 1 (.

[10] B. McFee, L. Barrington, and G. Lanckriet. Learning
content similarity for music recommendation. Audio,
Speech, and Language Processing, IEEE Transactions

on, 20(8):2207–2218, 2012.
[11] R. Ragno, C. J. Burges, and C. Herley. Inferring

similarity between music objects with application to
playlist generation. In Proceedings of the 7th ACM

SIGMM international workshop on Multimedia

information retrieval, pages 73–80. ACM, 2005.
[12] M. Schedl and D. Schnitzer. Location-aware music

artist recommendation. MultiMedia Modeling, pages
1–9, 2014.

