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ABSTRACT
Real-life recommender systems often face the daunting task
of providing recommendations based only on the clicks of
a user session. Methods that rely on user profiles – such
as matrix factorization – perform very poorly in this set-
ting, thus item-to-item recommendations are used most of
the time. However the items typically have rich feature rep-
resentations such as pictures and text descriptions that can
be used to model the sessions. Here we investigate how these
features can be exploited in Recurrent Neural Network based
session models using deep learning. We show that obvious
approaches do not leverage these data sources. We thus in-
troduce a number of parallel RNN (p-RNN) architectures to
model sessions based on the clicks and the features (images
and text) of the clicked items. We also propose alternative
training strategies for p-RNNs that suit them better than
standard training. We show that p-RNN architectures with
proper training have significant performance improvements
over feature-less session models while all session-based mod-
els outperform the item-to-item type baseline.

CCS Concepts
•Information systems → Collaborative filtering;
•Computing methodologies → Neural networks;
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In traditional recommender systems algorithms it is of-
ten assumed that user history logs (e.g. clicks, purchases
or views) are available. We show that this assumption does
not hold in many real-world recommendation use cases: (1)
many e-commerce sites do not require user authentication
even for purchase; (2) in video streaming services users also
rarely log in; (3) many sites have a small percentage of re-
turning users; (4) or the user intent can change between dif-
ferent sessions, typical for e.g. classified sites. User tracking
can partly solve the user identification problem across ses-
sions (e.g. through fingerprinting technology, cookies), but
this is often unreliable and also raises privacy concerns. So,
in such cases the typical solution is to resort to item-to-item
recommendations. Here we investigate how we can exploit
session data to improve recommendations.

Given the absence of user profiles, it is vital to draw as
much information as possible from the session clicks. Besides
the click-stream data of the session (clicked item-IDs), one
can also take into account the characteristics of the items
that have been clicked. Items often come with rich feature
representation such as detailed text description or (thumb-
nail) image. One can expect that e.g. users shopping for a
particular type of item will click on items that have similar
text descriptions and similar visual features. Images, text
or potentially even richer features such as animated gifs are
eventually what the user sees and what will determine the
appeal of an item to a user. Features become particularly
important in a session modeling setting where historical user
specific data is missing or has no importance. Such features
should be utilized to aid the session modeling process. Item
features are also a very good way to deal with item cold start
i.e. when a new item enters the pool of selectable items. The
joint modeling of the sequence of clicked item-IDs and item
features poses some interesting problems.

The algorithms in this work utilize deep learning tech-
niques both to extract high quality features from visual in-
formation and to model the sessions. (We also extract fea-
tures from text via bag-of-words.) Individual user sessions
can be seen as sequence of clicks. We use Recurrent Neural
Networks (RNNs) to model the session data. RNNs have
been shown to perform excellent in modeling sequence data
[15]. We introduce a number of parallel1 RNN (p-RNN) ar-

1Note that we use the term ’parallel’ to indicate that for



chitectures to model the session clicks concurrently with the
features (text or images) of the clicked items.

Instead of using a single RNN where all the data is used at
the input in a concatenated form, we apply parallel architec-
tures because of the very different nature of the data: image
features tend to be much denser than the one-hot represen-
tation of the item-ID or the bag-of-words representation of
text. Parallel training also allows us to fine-tune the individ-
ual networks with respect to their hyper-parameters while
also maintaining a connection between the networks through
shared parameters and optimization. We introduce 3 differ-
ent architectures of p-RNNs that combine the ID-click data
with the features of the clicked items. The architectures
vary with regards to the shared model parameters and in-
teractions of the hidden states (Section 3).

We also point out that training p-RNNs is not trivial.
Standard simultaneous training can waste the capacity of
the network, because different parts of the same network
may learn the same relations from the data. Therefore
we devise 3 alternative optimization procedures to train p-
RNNs. We thoroughly evaluate the proposed p-RNN archi-
tectures on (1) video recommendations using the thumbnail
and (2) product recommendations using text description on
a classified site. We compare against the industry standard
session-based solution, that is today the item-kNN.

2. RELATED WORK
Deep neural networks have been employed with tremen-

dous success in image recognition, segmentation and retrieval
tasks. Deep learning techniques have been used in tasks such
as image and speech recognition [5, 10, 20] where unstruc-
tured data is processed through several convolutional and
standard layers of (usually rectified linear) units.

Neural models for RecSys. Most of the work on deep
models and recommendations focus on the classical collab-
orative filtering (CF) user–item setting. Restricted Boltz-
mann Machines (RBM) were one of the first neural networks
to be used for classical CF and recommender systems [22].
More recently denoising autoencoders have been used to per-
form CF in a similar manner [30]. Deep networks have also
been used in cross-domain recommendation whereby items
are mapped to a joint latent space using deep neural net-
works [4].

Recurrent Neural Models. RNNs are the deep models
of choice when dealing with sequential data (see [15] for a
comprehensive review). RNNs have been used in image and
video captioning, time series prediction, natural language
processing, conversational models, text and music genera-
tion, and much more. Long Short-Term Memory (LSTM)
[11] networks are a type of RNNs that have been shown to
work particularly well, it includes additional gates that reg-
ulate when and how much to take the input into account
and when to reset the hidden state. This helps with the
vanishing gradient problem that often plagues the standard
RNN models. Slightly simplified version of LSTM – that
still maintains all their properties – are Gated Recurrent
Units (GRUs) [2] which we use in this work.

each aspect/feature of the clicked item (e.g. the item-ID,
text description, image features) there is a separate RNN
processing the input. ’Parallel’ refers to the fact that we
have multiple RNNs rather than distributed processing of
the data or the algorithm computations. While distributed
versions of RNNs exist [21] this is not the focus of this work.

Session-based recommendations. Classical CF meth-
ods (e.g. matrix factorization) break down in the session-
based setting when no user profile can be constructed from
past user behavior. A natural solution to this problem is the
item-to-item recommendation approach [24, 14]. In this set-
ting an item-to-item similarity matrix is precomputed from
the available session data, items that are often clicked to-
gether in sessions are deemed to be similar. These similari-
ties are then used to create recommendations. While simple,
this method has been proven to be effective and is widely
employed. Though, these methods only take into account
the last click of the user, in effect ignoring the information
of the previous clicks.

Markov Decision Processes (MDP) [25] are the only other
approach that aims to provide recommendations in a session-
based manner while taking into account information be-
yond the last click. MDPs are models of sequential stochas-
tic decision problems. An MDP is defined as a four-tuple
〈S,A,Rwd, tr〉 where S is the set of states, A is a set of ac-
tions Rwd is a reward function and tr is the state-transition
function. In recommender systems the set of actions are es-
sentially the recommendations that can be shown. The sim-
plest MPDs boil down to first order Markov chains where
the next recommendation can be simply computed through
the transition probabilities between items. A major issue
with applying Markov chains in the session-based recom-
mendation setting is that the state space quickly becomes
unmanageable when trying to include all possible sequences
of potential user selections over all items.

The first application of neural models in session-based rec-
ommendation used RNNs to model the session data [7]. The
recurrent neural network is trained with a ranking loss on a
one-hot representation of the session (clicked) item-IDs. The
RNN is then used to provide recommendations on new user
sessions. This work only focused on the clicked item-IDs
while here we aim at modeling a much richer representation
of the clicked items.

Feature-rich recommendations. Deep models have
been used to extract features from unstructured content such
as music or images [3, 26]. In recommender systems these
features are then typically used together with more con-
ventional collaborative filtering models. Convolutional deep
network have been used to extract features from music files
that are then used in a factor model [28]. More recently [29]
introduced a more generic approach whereby a deep network
is used to extract generic content-features from items, these
features are then incorporated in a standard CF model to
enhance the recommendation performance. This approach
seems to be particularly useful in settings where there is not
sufficient user–item interaction information. Image features
that have been extracted using convolutional networks have
been used in classical matrix factorization-type CF in [6, 16]
to enhance the quality of recommendations.

3. P-RNN ARCHITECTURES
In this section we describe the proposed parallel RNN (p-

RNN) architectures that utilize item representations (fea-
tures) for session modeling. A p-RNN consists of multiple
RNNs, one for each representation/aspect of the item (e.g.
one for ID, one for image and one for text). The hidden
states of these networks are merged to produce the score for
all items. We also introduce baseline architectures, naive
approaches for using the different item representations.



As a basis, we take the best RNN setting from [7]: a single
GRU layer without feedforward layers and the TOP1 pair-
wise loss function along with session-parallel mini-batching.
The input of the networks is the item ID of a transaction.
The input then translates to either (a) a one-hot ID vector2;
or (b) a precomputed dense image feature vector; or (c) a
sparse unigram + bigram text feature vector. See details on
feature extraction in Section 4. The proposed architectures
use a subset of the above 3 item representations. The output
is a score for every item indicating the likelihood of being
the next item in the session. During training scores are com-
pared to a one-hot vector created from the item ID of the
next event in the session to compute the loss. In order to
reduce computational costs, only the score of the target item
and that of a small subset of “negative” items – sampled in
each step (see [7]) – are computed during training.

The TOP1 loss is the regularized approximation of the
relative rank of the relevant item. The relative rank of the
relevant item is given by 1

NS
·
∑NS

j=1 I{r̂s,j > r̂s,i} where NS

is the sample size, r̂s,i is the predicted score of the target
item, r̂s,j is the score of negative (other) items in the sample
and I{·} is approximated with a sigmoid. Optimizing for
this loss modifies the parameters so that the score for i is
high. This loss though is unstable as some positive items
also act as negative examples and so scores tend to become
increasingly higher. To avoid this, the scores of the negative
examples are pushed towards zero through a regularization
term. The loss function thus takes the following form: Ls =
1

NS
·
∑NS

j=1 σ (r̂s,j − r̂s,i) + σ
(
r̂2s,j
)
. Given that a typical item

set in recommender systems is in the 100,000s, evaluating
this loss over all items is computationally prohibitive. We
thus use a sampling procedure whereby the loss is evaluated
on a sample of the items. For a given session we use the
items in the other sessions of the mini-batch as negative
samples. This is computationally cheap and also allows us
to get samples from the real distribution of the data.

We devised the following architectures (see Figure 1). Due
to limited space, we only present architectures with ID and
image features; for text features one can proceed analogously
as with image ones. The parallel architectures can also deal
with ID, image and text features simultaneously. The archi-
tectures can be separated into two groups:
1. Baseline architectures:
ID only: This architecture only uses the one-hot ID vectors
and is identical to the one used in [7]. It serves as a baseline
in our experiments.
Feature only: The input of this variant is one of the con-
tent feature vectors (image or text). Otherwise it works
similarly to the previous network.
Concatenated input: The easiest way to combine differ-
ent item representations is to concatenate them. This net-
work uses the concatenated representations as its input.
2. p-RNN architectures:
Parallel: The first parallel architecture trains one GRU net-
work for each of the representations. Outputs are computed
from the concatenation of the hidden layers of the subnets.3

Training can be done in different ways (see training strate-
gies below).

2Also referred to as 1-of-N encoding. The length of the
vector equals to the number of items and only the coordinate
corresponding to the ID is 1, the others are 0.
3I.e. computing output scores separately, weighting them
and using the final activation function on it.

Parallel shared-W: This architecture differs from the pre-
vious one by having a shared hidden to output weight ma-
trix. Scores are not computed for each subnetwork sepa-
rately. Instead, the weighted sum of the hidden states is
multiplied by a single weight matrix to produce the output.
Having a shared weight matrix greatly reduces the number
of parameters and thus decrease training times and overfit-
ting. This model is also analogous to the pairwise model
from context-aware factorization research.4

Parallel interaction: In this architecture, the hidden state
of the item feature subnet(s) is multiplied by the hidden
state of the ID subnet in an element-wise manner before
computing the score of the subnet(s). Mixing different as-
pects of the session to compute item scores is analogous to
context-aware preference modeling. For that task [9] found
that the interaction model, i.e. the sum of the user–item and
user–context–item interaction to perform the best. This ar-
chitecture mimics that model with the ID subnet being pro-
moted to the primary representation of the session. The
main difference to the context-aware task is that all of our
representations are session representations and not (mostly)
independent dimensions. Also note that contrary to the orig-
inal interaction model, the output weight matrix (item fea-
ture matrix) is not shared in our model.

3.1 Training p-RNNs
Training parallel architectures is not trivial. Standard

backpropagation across the whole architecture can produce
suboptimal results due to different components of the archi-
tecture learning the same relations from the data. This can
be avoided by pretraining some parts of the network and
training the rest afterwards. This cycle can be done several
times, motivated by the success of alternating methods like
ALS for matrix factorization. Note that while the param-
eters of fixed networks remain unchanged they still partic-
ipate in the forward pass and they are only excluded from
the backpropagation. We developed the following training
strategies for p-RNNs:
Simultaneous: Every parameter of every subnet is trained
simultaneously. Serves as the baseline.
Alternating: Subnets are trained in an alternating fashion
per epoch. For example, the ID subnet is trained in the first
epoch, while the others are fixed; then we fix the ID subnet
and train the image subnet for one epoch; and so on. The
cycle restarts after each subnet was trained.
Residual: Subnets are trained one after the other, on the
residual error of the ensemble of the previously trained sub-
nets. The cycle does not start over, but the individual train-
ing of a subnet is longer compared to the alternating method.
For example, the ID subnet is trained for 10 epochs, then
the image subnet is trained on the residual error of the ID
subnet and so on.
Interleaving: Alternating training per mini-batch. For
each mini-batch of training examples, the first subnet is
trained, the second subnet is trained on the residual error
for the current mini-batch and so on. The more frequent al-
ternation allows for a more balanced training across subnets
without the drawbacks of the simultaneous training.

4The hidden to output matrix is the item feature matrix.
The hidden states are different representations of the session,
i.e. different context dimensions.
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Figure 1: RNN architectures for feature inclusion. Architectures are presented with ID and image features
only, but text features can be used in place of the image features as well. The parallel architectures can also
be extended to have networks for ID, image and text features simultaneously. f() is the nonlinearity applied
to the network output (tanh in our case). Top row (left to right): ID only; Concatenated input; Parallel.
Bottom row (left to right): Feature only; Parallel with interaction model; Parallel with shared weight matrix.

4. FEATURE EXTRACTION
In this Section we describe the feature extraction process

used to create item representations from images and text.
Image features were extracted from video thumbnails, while
text features are based on product descriptions.

Encoding images. Recently, deep learning research on
convolutional neural networks (CNNs) achieved breakthroughs
in a variety of different image-related tasks, like object recog-
nition, image segmentation, video classification, etc. [12,
13] even surpassing human performance on the task of ob-
ject recognition [5]. Unlike other approaches, CNNs don’t
require prior feature extraction, since they are capable of
working on the raw image data. CNNs trained on millions
of images produce image features that can then be used as
input in other algorithms e.g. clustering [3, 26]. These mod-
els generalize well and also perform well on images that the
CNN has never encountered during training and can thus be
used as generic feature extractors. This makes CNNs ideal
for extracting high quality image features.

We used the GoogLeNet [27] implementation of the Caffe
deep learning framework [12] to extract features from the
thumbnails of the videos. The network was pre-trained as

an image classifier on the ImageNet ILSVRC 2014 dataset
[19] that contains 1.2M images organized into 1000 cate-
gories. The video thumbnails first had to be scaled down
and cropped in order to fit the input of the network. Fea-
tures were extracted from the last average pooling layer.5

The feature vectors were normalized to an l2 norm of 1. The
image feature representation we end up with is a real-valued
vector of length 1024.

Figure 2 demonstrates the feature quality by showing the
3 most similar images to two query images, where similarity
is defined as the cosine similarity between the image feature
vectors. Given the good quality, we do not plug the CNN di-
rectly into the RNN, as it would introduce unnecessary com-
plexity to the training and is also unpractical, because (a)
this network would converge much slower as it needs to learn
the model on incomplete/changing item representations; (b)
the network would not be suitable for datasets with lower
number of items, as 10,000s of items are not enough to lever-
age the full potential of the CNN; (c) retraining would take
much longer. Another possibility is to use the pretrained
network and fine tune the item representations during the

5Extracted as the value of the pool5 7x7 s1 layer.



training of the RNN. This did not make much difference in
our experiments, therefore we did not use fine tuning.

Figure 2: Top3 similar images to query images,
based on cosine similarity of image feature vectors.

Encoding text. Given the strict limitation on the length
of the descriptions imposed by online classified advertise-
ment platforms, advertisers usually provide rather concise
text for their items. The main goal of the description is to
attract the attention of potentially interested users. There-
fore, descriptions often contain only the main characteristics
of the item and use syntactically incorrect sentences. More-
over, it is not rare to have descriptions written in multiple
languages to capture a broader audience. The majority of
descriptions of our dataset used a subset of 3 main languages
with a handful of less frequent ones also present.

Given the inherent noise in user generated, unstructured
text and multiple languages in our data, we adopted the clas-
sical bag-of-words representation to encode product descrip-
tions. First we concatenated the title and the description of
the items.6 We filtered stopwords and extracted unigrams
and bigrams from text, and discarded all the entries that
appear only once. Finally, the resulting bag-of-words was
weighted using TF-IDF [23]. The item representation is a
sparse vector of length 1,099,425 with an average of 5.44
non-zero coordinates.

We tried other methods to extract features from unstruc-
tured text, e.g. distributed bag-of-words [18] and Language
Modeling with RNNs [17]. However the classical bag-of-
words with TF-IDF was found to work best with our data.
We attribute this to the noisiness of user generated con-
tent. The lack of English text and the presence of multiple
languages prevented us from using pre-trained word repre-
sentations, e.g. from word2vec.7

Experiments with adding an embedding layer between the
features and the network resulted in worse performance,
therefore, the classical bag-of-words/TF-IDF features were
used as item representations and were used directly as the
input of the RNNs.

5. RESULTS
The evaluation was done on two proprietary datasets. The

first dataset – coined VIDXL – was collected over a 2-month
period from a Youtube-like video site, and contains video
watching events having at least a predefined length. During
the collection item-to-item recommendations were displayed
next to the featured video, generated by a selection of differ-
ent algorithms. The second dataset consists of product view
events of an online classified site. We refer to this dataset as
CLASS. The site also had recommendations displayed with
different algorithms during the collection period.
6We explicitly avoided to repeat the title if this was already
written at the beginning of the text
7https://code.google.com/p/word2vec

During the preprocessing of the raw event streams we fil-
tered out unrealistically long sessions as these are likely due
to bot traffic. We removed sessions of one (single click) event
because they are not useful for session-based recommenda-
tions and also removed items whose support is below five,
as items with low support are not ideal for modeling. The
sessions of the last day of each dataset are put into the test
set. Each session is assigned to either the training or the
test set, we do not split the data mid-session. We also filter
items from the test dataset if they were not in the train-
ing set. This affects only a tiny fraction of the items. The
datasets are summarized in Table 1.

Table 1: Properties of the datasets.

Data
Train set Test set

Items
Sessions Events Sessions Events

VIDXL 17,419,964 69,312,698 216,725 921,202 712,824
CLASS 1,173,094 9,011,321 35,741 254,857 339,055

We evaluate wrt. the (sequential) next-event prediction
task, i.e. given an event of the session how well can the al-
gorithms predict the next event of the session. The trained
model is fed with the events of a session one after another
and we check the rank of the selected item of the next event.
The hidden state of the network is reset to zero after a ses-
sion ends.

As recommender systems recommend only a few items
at once, the relevant item should be amongst the first few
items of the list. Therefore, our first evaluation metric is
recall@20 that is the proportion of cases having the desired
item amongst the top-20 items of all test cases. Recall does
not consider the actual rank of the item as long as it is
below 20. This is an accurate model for certain practical
scenarios where no recommendation is highlighted and their
absolute order does not matter. Recall also usually corre-
lates well with important online KPIs, such as click-through
rate (CTR)[8]. The second metric used in the experiments
is MRR@20 (Mean Reciprocal Rank). MRR is the average
of the reciprocal ranks of the desired items. The reciprocal
rank is set to zero if the rank is above 20. MRR takes the
rank of the item into account, which is important in cases
where the order of recommendations matters (e.g. the lower
ranked items are only visible after scrolling).

5.1 Thumbnail based video recommendation
We extracted image features from the thumbnails of the

videos, see Section 4 for the details of the feature extraction.
We experimented with different architectures and training
strategies described in Section 3 to see how image data can
contribute to recommendation accuracy.

Similarly to [7], the networks optimize for TOP1 loss using
adagrad. The parameters – such as dropout, learning rate,
momentum, batch size, etc. – of the ID only and the feature
only networks were optimized on a hold out validation set.
Then the networks were retrained on the full training set
(validation set included) and the final results were measured
on the test set. Due to the size of the VIDXL dataset, the
more complex networks used the optimal parameters of the
ID and image networks in their corresponding subnets. The
weights of the subnets were set to be equal as we did not
get significantly different results until either of the subnet



weights was set to zero.
To speed up evaluation, we computed the rank of the rel-

evant item compared to the 50,000 most supported items.
While this evaluation methodology somewhat overestimates
the rank and thus the evaluated metrics are a little bit
higher, the comparison of the algorithms remains fair [1].

Table 2 summarizes the results with different architectures
and training methods. In this experiment the number of hid-
den units was set to 100 for the baseline architectures and
100 per subnetwork for p-RNNs. The networks are trained
for 10 epochs as there is no significant change in the loss
after that. The networks are compared to the item-kNN
algorithm, the de-facto solution for item-to-item and item-
to-session recommendation tasks in the industry. p-RNNs
with 100+100 hidden units can easily outperform the ID
only network with 100 units, due to the additional infor-
mation source and the increase of the overall capacity of the
network. Therefore we also measured the accuracy of the ID
only network with 200 units. Note that this is a very strong
baseline, because having 200 hidden units increases the ca-
pacity of the network ∼4 times, while having 100+100 only
doubles it. Also, the doubled capacity of p-RNN is split
between two information sources, therefore it is clearly in
disadvantage to even an RNN with doubled capacity. Nev-
ertheless we show that p-RNNs can often beat this strong
baseline as well, while they are typically better than the ID
only network with 100 units.

Table 2: Results on VIDXL, using image features
extracted from thumbnails. The best results are
typeset in bold. p-RNNs use 100+100 hidden units,
others use 100 unless stated otherwise. Performance
gain over item-kNN is shown in parentheses.

Method Recall@20 MRR@20

Item-kNN 0.6263 0.3740

ID only 0.6831 (+9.07%) 0.3847 (+2.85%)
ID only (200) 0.6963 (+11.17%) 0.3881 (+3.77%)
Feature only 0.5367 (−14.30%) 0.3065 (−18.05%)
Concatenated 0.6766 (+8.03%) 0.3850 (+2.94%)

Parallel (sim) 0.6765 (+8.01%) 0.4014 (+7.34%)
Parallel (alt) 0.6874 (+9.76%) 0.4331 (+15.81%)
Parallel (res) 0.7028 (+12.21%) 0.4440 (+18.72%)
Parallel (int) 0.7040 (+12.41%) 0.4361 (+16.60%)

Shared-W (sim) 0.6681 (+6.66%) 0.4007 (+7.13%)
Shared-W (alt) 0.6804 (+8.63%) 0.4035 (+7.88%)
Shared-W (res) 0.6425 (+2.58%) 0.3541 (−5.31%)
Shared-W (int) 0.6658 (+6.31%) 0.3715 (−0.66%)

Int. model (sim) 0.6751 (+7.78%) 0.3998 (+6.90%)
Int. model (alt) 0.6847 (+9.32%) 0.4104 (+9.74%)
Int. model (res) 0.6749 (+7.76%) 0.4098 (+9.56%)
Int. model (int) 0.6843 (+9.25%) 0.4040 (+8.02%)

Similar to [7], the RNN outperforms the item-kNN base-
line by a large margin. The recall for the RNN on this task
is very high, therefore it is very hard for the more advanced
architectures to significantly improve on this result. The
network that is trained on the image features only is signifi-
cantly worse than the ID only network and even worse than
the item-kNN, demonstrating that the sequence of item fea-
tures in and of itself is not enough to model the session well.
Feeding the network with the concatenated input of IDs and
image features, because the stronger input dominates during

the training, thus the performance hardly differs from that
of the ID only network. It is hard for a single GRU layer
to handle two types of inputs at once, resulting in a perfor-
mance very similar to that of the ID only network. Adding
item features using the naive approach has no observable
benefits. Therefore we propose to use p-RNNs instead.

Moving on to the proposed p-RNN architectures, one can
see that several configurations perform significantly better
than the strong ID only baseline. Due to the originally high
recall of the network, these novel architectures mostly in-
crease the MRR, i.e. they don’t find more relevant items,
but they rank them better. The best performing architec-
ture is the classic parallel one. With the naive simultaneous
training it is significantly better than the strong ID only
baseline wrt. MRR, but slightly worse wrt. recall. With
simultaneous training, different components of the p-RNN
learn the same relations from the data, thus the full capacity
of the network is not leveraged. Therefore we propose using
alternative training strategies.

The best of the alternative training methods is residual
training, closely followed by the interleaving one, but the
alternating training is also not far behind. The p-RNN with
residual training outperforms the strong ID only baseline
by 14.07% in MRR, while achieving similar recall. The im-
provement is even greater over the industry de facto item-
kNN solution: 12.21% in recall and 18.72% in MRR.

Table 3: Results on VIDXL, using image features
extracted from thumbnails. The best results are
typeset in bold. p-RNN architectures use 500+500
hidden units, others use 1000. Performance gain
over item-kNN is shown in parentheses.

Network variant Recall@20 MRR@20

ID only, 10 epochs 0.7279 (+16.21%) 0.4350 (+16.32%)
ID only, 20 epochs 0.7207 (+15.07%) 0.4287 (+14.63%)
Feature only 0.6479 (+3.45%) 0.4089 (+9.34%)
Concatenated 0.7216 (+15.22%) 0.4291 (+14.72%)

Parallel (sim) 0.7084 (+13.10%) 0.4420 (+18.19%)
Parallel (alt) 0.7142 (+14.03%) 0.4456 (+19.15%)
Parallel (res) 0.7165 (+14.40%) 0.4513 (+20.67%)
Parallel (int) 0.7262 (+15.59%) 0.4587 (+22.64%)

By increasing the number of hidden units, the capacity of
the RNN increases, thus this parameter has a large effect
on performance. However this parameter also obeys the law
of diminishing returns. We found that results do not im-
prove significantly above ∼1000 hidden units on this prob-
lem. We ran experiments with 1000 features on non-parallel
and 500+500 features on the best performing p-RNN ar-
chitecture (i.e. classic parallel) to confirm that adding item
features can also benefit session modeling when increasing
the network capacity and/or the number of epochs has di-
minishing returns. Table 3 depicts the results.

With more hidden units, the performance increases and
even the feature only network outperforms the item-kNN
baseline as the capacity of the network is enough to leverage
the information in the image features. But otherwise the
relation between the results is similar to that of the previ-
ous experiments. This further underpins that p-RNNs with
alternative training strategies are vital for efficiently incor-
porating item features into learning session models. Further
increasing the number of hidden units and/or the number of



epochs did not increase the performance of any network sig-
nificantly, but p-RNN architectures significantly outperform
the ID only network with more than 2 times larger capac-
ity in terms of MRR (∼7% with interleaving training) and
have similar recall. This means that the proposed architec-
tures with the proposed training strategies can significantly
increase performance, even when increasing the capacity of
the network has diminishing returns. In other words, adding
additional data sources (item features) can increase the ac-
curacy of recommendations beyond the maximum achiev-
able just from item IDs. However handling multiple sources
requires special architectures and training: p-RNNs and al-
ternative training strategies.

5.2 Using product descriptions
We repeated the last experiment – i.e. baseline RNNs had

1000 hidden units; the classic p-RNN had 500 per subnet –
on the CLASS dataset with features extracted from product
descriptions instead of images. See the detailed feature ex-
traction process in Section 4. The experimental setup was
the same as before, except that we opted for ranking all
items during evaluation, because it is possible to do the full
evaluation within reasonable time due to the significantly
smaller size of this dataset (compared to VIDXL).

Table 4: Results on CLASS, using textual features
extracted from product descriptions. The best re-
sults are typeset in bold. p-RNN architectures use
500+500 hidden units, others use 1000. Perfor-
mance gain over item-kNN is shown in parentheses.

Training info Recall@20 MRR@20

Item-kNN baseline 0.2387 0.0839

ID only, 10 epochs 0.2849 (+19.38%) 0.1062 (+26.56%)
ID only, 20 epochs 0.2783 (+16.60%) 0.1051 (+25.26%)
Feature only 0.2397 (+0.47%) 0.0937 (+11.70%)
Conc. input 0.2844 (+19.17%) 0.1029 (+22.64%)

Parallel (sim) 0.2741 (+14.85%) 0.1019 (+21.53%)
Parallel (alt) 0.2877 (+20.97%) 0.1096 (+30.62%)
Parallel (res) 0.2946 (+23.44%) 0.1119 (+33.36%)
Parallel (int) 0.2854 (+19.57%) 0.1058 (+26.17%)

The results (see Table 4) concur with that of the earlier
experiments with image features. The text only network
significantly outperforms the item-kNN baseline in terms of
MRR. This confirms that textual features can be effectively
exploited to generate better rankings. However it falls short
when compared with the ID only network. This suggests
that text features alone are not enough. With concatenated
input, the network performs similarly to the ID only network
analogously to previous experiments.

The proposed alternative training strategies are of cru-
cial importance when training p-RNNs, the simultaneous
training is clearly suboptimal wrt. recommendation accu-
racy. The classic p-RNN with alternative training strategies
significantly outperformed both the ID only RNN and item-
kNN in both recall and MRR. Residual training proved to
be the best strategy in this experiment with ∼6% improve-
ment in recall and ∼6.5% in MRR over the ID only network.
Note that further increasing the number of hidden units or
number of epochs for the baseline RNNs did not improve the
results any further. Thus using text based item features in

p-RNNs with proper training can also increase recommen-
dation accuracy beyond what is achievable from IDs only.
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Figure 3: Comparing best performing p-RNN
against the ID only RNN and item-kNN.

We demonstrate the power of the proposed solution (500
units per subnet) by comparing it to item-kNN and the ID
only network with 1000 hidden units on Figure 3.

6. CONCLUSION
In this paper we examined the use of item features (image

data and text) in RNN-based session modeling to improve
session-based recommendations. We pointed out that using
item features in and of themselves is not enough to prop-
erly model the session and combining multiple data sources
efficiently (e.g. ID and image) is not trivial. We proposed p-
RNN architectures that can leverage the added value of mul-
tiple item representations. We devised alternative training
strategies (alternating, residual and interleaving training)
that fit these architectures better than backpropagating the
error through the whole network. The proposed architec-
tures and training methods significantly outperformed both
RNNs with ID only input and the industry de facto solu-
tion for this problem, item-kNN. Finally, we showed that
by using p-RNNs with alternative training, recommenda-
tion accuracy can be increased beyond the maximum that is
achievable by RNNs with ID only input by increasing their
capacity and/or the number of training epochs.
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