
Personalizing Session-based Recommendations with
Hierarchical Recurrent Neural Networks

Massimo Quadrana
Politecnico di Milano, Milan, Italy
massimo.quadrana@polimi.it

Alexandros Karatzoglou
Telefonica Research, Barcelona, Spain

alexk@tid.es

Balázs Hidasi
Gravity R&D, Budapest, Hungary
balazs.hidasi@gravityrd.com

Paolo Cremonesi
Politecnico di Milano, Milan, Italy

paolo.cremonesi@polimi.it

ABSTRACT
Session-based recommendations are highly relevant in many mod-
ern on-line services (e.g. e-commerce, video streaming) and rec-
ommendation settings. Recently, Recurrent Neural Networks have
been shown to perform very well in session-based settings. While
in many session-based recommendation domains user identifiers
are hard to come by, there are also domains in which user profiles
are readily available. We propose a seamless way to personalize
RNN models with cross-session information transfer and devise
a Hierarchical RNN model that relays end evolves latent hidden
states of the RNNs across user sessions. Results on two industry
datasets show large improvements over the session-only RNNs.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Neural networks;

KEYWORDS
recurrent neural networks; personalization; session-based recom-
mendation; session-aware recommendation

1 INTRODUCTION
In many online systems where recommendations are applied, inter-
actions between a user and the system are organized into sessions.
A session is a group of interactions that take place within a given
time frame. Sessions from a user can occur on the same day, or
over several days, weeks, or months. A session usually has a goal,
such as finding a good restaurant in a city, or listening to music of
a certain style or mood.

Providing recommendations in these domains poses unique chal-
lenges that until recently have been mainly tackled by applying
conventional recommender algorithms [10] on either the last inter-
action or the last session (session-based recommenders). Recurrent
Neural Networks (RNNs) have been recently used for the purpose
of session-based recommendations [7] outperforming item-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys’17, August 27–31, 2017, Como, Italy.
© 2017 ACM. 978-1-4503-4652-8/17/08. . . $15.00
DOI: http://dx.doi.org/10.1145/3109859.3109896

methods by 15% to 30% in terms of ranking metrics. In session-based
recommenders, recommendations are provided based solely on the
interactions in the current user session, as user are assumed to be
anonymous. But in many of these systems there are cases where
a user might be logged-in (e.g. music streaming services) or some
form of user identifier might be present (cookie or other identifier).
In these cases it is reasonable to assume that the user behavior
in past sessions might provide valuable information for providing
recommendations in the next session.

A simple way of incorporating past user session information in
session-based algorithm would be to simply concatenate past and
current user sessions. While this seems like a reasonable approach,
we will see in the experimental section that this does not yield the
best results.

In this work we describe a novel algorithm based on RNNs that
can deal with both cases: (i) session-aware recommenders, when user
identifiers are present and propagate information from the previ-
ous user session to the next, thus improving the recommendation
accuracy, and (ii) session-based recommenders, when there are no
past sessions (i.e., no user identifiers). The algorithm is based on a
Hierarchical RNN where the hidden state of a lower-level RNN at
the end of one user session is passed as an input to a higher-level
RNN which aims at predicting a good initialization (i.e., a good
context vector) for the hidden state of the lower RNN for the next
session of the user.

We evaluate the Hierarchical RNNs on two datasets from in-
dustry comparing them to the plain session-based RNN and to
item-based collaborative filtering. Hierarchical RNNs outperform
both alternatives by a healthy margin.

2 RELATEDWORK
Session-based recommendations.Classical CFmethods (e.g. ma-
trix factorization) break down in the session-based setting when no
user profile can be constructed from past user behavior. A natural
solution to this problem is the item-to-item recommendation ap-
proach [11, 16]. In this setting an item-to-item similarity matrix is
precomputed from the available session data, items that are often
clicked together in sessions are deemed to be similar. These similar-
ities are then used to create recommendations. While simple, this
method has been proven to be effective and is widely employed.
Though, these methods only take into account the last click of the
user, in effect ignoring the information of the previous clicks.

RecurrentNeuralModels. RNNs are the deepmodels of choice
when dealing with sequential data [12]. RNNs have been used in im-
age and video captioning, time series prediction, natural language
processing and much more. Long Short-Term Memory (LSTM) [9]
networks are a type of RNNs that have been shown to work par-
ticularly well, it includes additional gates that regulate when and
how much to take the input into account and when to reset the
hidden state. This helps with the vanishing gradient problem that
often plagues the standard RNN models. Slightly simplified ver-
sion of LSTM – that still maintains all their properties – are Gated
Recurrent Units (GRUs) [3] which we use in this work.

RNNs were first used to model session data in [7]. The recurrent
neural network is trained with a ranking loss on a one-hot repre-
sentation of the session (clicked) item-IDs. The RNN is then used
to provide recommendations after each click for new sessions. This
work only focused on the clicked item-IDs in the current session
while here we aim at modeling the user behavior across sessions as
well. RNNs were also used to jointly model the content or features
of items together with click-sequence interactions [8]. By including
item features extracted for example, from the thumbnail image of
videos or the textual description of a product, the so-called parallel-
RNN model provided superior recommendation quality wrt. ‘plain’
RNNs. In [19], authors proposed data augmentation techniques to
improve the performance of the RNN for session-based recommen-
dations, these techniques have though the side effect of increasing
training times as a single session is split into several sub-sessions
for training. RNNs have also been used in more standard user-item
collaborative filtering settings where the aim is to model the evo-
lution of the user and items factors [20] [4] where the results are
though less impressive, with the proposed methods barely outper-
forming standard matrix factorization methods. Finally a sequence
to sequence model with a version of Hierarchical Recurrent Neural
Networks was used for generative context-aware query suggestion
in [17].

3 MODEL
In this section we describe the proposed Hierarchical RNN (HRNN
henceforth) model for personalized session-based recommendation.

3.1 Session-based Recurrent Neural Network
Our model is based on the session-based Recurrent Neural Network
(RNN henceforth) model presented in [7]. RNN is based on a single
Gated Recurrent Unit (GRU) layer that models the interactions of
the user within a session. The RNN takes as input the current item
ID in the session and outputs a score for each item representing
the likelihood of being the next item in the session.

Formally, for each session Sm = {im,1, im,2, ..., im,Nm }, RNN
computes the following session-level representation

sm,n = GRUses
(
im,n , sm,n−1

)
, n = 1, ...,Nm − 1 (1)

where GRUses is the session-level GRU and sm,n its hidden state
at step n, being sm,0 = 0 (the null vector), and im,n is the one-hot
vector of the current item ID 1.

The output of the RNN is a score r̂m,n for every item in the
catalog indicating the likelihood of being the next item in the session

1To simplify the explanation we use a notation similar to [17].

(or, equivalently, its relevance for the next step in the session)

r̂m,n = д
(
sm,n

)
, n = 1, ...,Nm − 1 (2)

where д (·) is a non-linear function like softmax or tanh depending
on the loss function. During training, scores are compared to a one-
hot vector of the next item ID in the session to compute the loss. The
network can be trained with several ranking loss functions such as
cross-entropy, BPR [14] and TOP1 [7]. In this work, the TOP1 loss
always outperformed other ranking losses, so we consider only it in
the rest of the paper. The TOP1 loss is the regularized approxima-
tion of the relative rank of the relevant item. The relative rank of the
relevant item is given by 1

NS
·∑NS

j=1 I {r̂s, j > r̂s,i } where rs, j is the
score of a sampled ‘irrelevant item’. I {·} is approximated with a sig-
moid. To force the scores of negative examples (‘irrelevant items’)
towards zero a regularization term is added to the loss. The final
loss function is as follows: Ls = 1

NS
·∑NS

j=1 σ
(
r̂s, j − r̂s,i

)
+ σ

(
r̂2s, j

)
RNN is trained efficiently with session-parallel mini-batches.

At each training step, the input to GRUses is the stacked one-hot
representation of the current item ID of a batch of sessions. The
session-parallel mechanism keeps the pointers to the current item
of every session in the mini-batch and resets the hidden state of the
RNN when sessions end. To further reduce the computational com-
plexity, the loss is computed over the current item IDs and a sample
of negative items. Specifically, the current item ID of each session
is used as positive item and the IDs of the remaining sessions in
the mini-batch as negative items when computing the loss. This
makes explicit negative item sampling unnecessary and enables
popularity-based sampling. However, since user-identifiers are un-
known in pure session-based scenarios, there are good chances that
negative samples will be ‘contaminated’ by positive items the user
interacts with in other sessions.

3.2 Personalized Session-based Hierarchical
Recurrent Neural Network

Our HRNN model builds on top of RNN by: (i) adding an additional
GRU layer to model information across user sessions and to track
the evolution of the user interests over time; (ii) using a powerful
user-parallel mini-batch mechanism for efficient training.

3.2.1 Architecture. Beside the session-level GRU, our HRNN
model adds one user-level GRU (GRUusr) to model the user activity
across sessions.

Figure 1 shows a graphical representation of HRNN . At each
time step, recommendations are generated by GRUses , as in RNN.
However, when a session ends, the user representation is updated.
When a new session starts, the hidden state of GRUusr is used to
initialize GRUses and, optionally, propagated in input to GRUses .

Formally, for each user u with sessions Cu = {Su1 , S
u
2 , ..., S

u
Mu

},
the user-level GRU takes as input the session-level representations
su1 , s

u
2 , ..., s

u
Mu

, being sum = sum,Nm−1 the last hidden state ofGRUses
of each user session Sum , and uses them to update the user-level
representation cum . Henceforth we drop the user superscript u to
unclutter notation. The user-level representation cm is updated as

cm = GRUusr (sm , cm−1) , m = 1, ...,Mu (3)

where c0 = 0 (the null vector). The input to the user-level GRU is
connected to the last hidden state of the session-level GRU. In this

s1 s2

i2,4i1,3

c2c0
c1

user representation
propagation

i2,3i2,1 i2,2

prediction i2,5i2,4i2,2 i2,3

input
item id

i1,4i1,2 i1,3

user-level
representation

session-level
representation

session
initialization

i1,1 i1,2

s1,0

Figure 1: Graphical representation of the proposed Hierarchical RNNmodel for personalized session-based recommendation.
The model is composed of an hierarchy of two GRUs, the session-level GRU (GRUses) and the user-level GRU (GRUusr). The
session-level GRU models the user activity within sessions and generates recommendations. The user-level GRU models the
evolution of the user across sessions and provides personalization capabilities to the session-level GRU by initializing its
hidden state and, optionally, by propagating the user representation in input.

way, the user-level GRU can track the evolution of the user across
sessions and, in turn, model the dynamics user interests seamlessly.
Notice that the user-level representation is kept fixed throughout
the session and it is updated only when the session ends.

The user-level representation is then used to initialize the hidden
state of the session-level GRU. Given cm , the initial hidden state
sm+1,0 of the session-level GRU for the following session is set to

sm+1,0 = tanh (Winitcm + binit) (4)

where Winit and binit are the initialization weights and biases
respectively. In this way, the information relative to the preferences
expressed by the user in the previous sessions is transferred to
the session-level. Session-level representations are then updated as
follows

sm+1,n = GRUses
(
im+1,n , sm+1,n−1 [, cm]

)
, n = 1, ...,Nm+1 − 1

(5)
where the square brackets indicate that cm can be optionally propa-
gated in input to the session-level GRU.

The model is trained end-to-end using back-propagation [15].
The weights of GRUusr are updated only between sessions, i.e.
when a session ends and when the forthcoming session starts. How-
ever, when the user representation is propagated in input toGRUses ,
the weights of GRUusr are updated also within sessions even if cm
is kept fixed. We also tried with propagating the user-level repre-
sentation to the final prediction layer (i.e., by adding term cm in
Equation 2) but we always incurred into severe degradation of the
performances, even wrt. simple session-based RNN. We therefore
discarded this setting from this discussion.

Note here that the GRUusr does not simply pass on the hidden
state of the previous user session to the next but also learns (during

training) how user sessions evolve during time. We will see in the
experimental section that this is crucial in achieving increased per-
formance. In effectGRUusr computes and evolves a user profile that
is based on the previous user sessions, thus in effect personalizing
the GRUses . In the original RNN, users who had clicked/interacted
with the same sequence of items in a session would get the same
recommendations; in HRNN this is not anymore the case, recom-
mendations will be influenced by the the users past sessions as
well.

In summary, we considered the following two different HRNN
settings, depending on whether the user representation cm is con-
sidered in Equation 5:

• HRNN Init, in which cm is used only to initialize the repre-
sentation of the next session.

• HRNN All, in which cm is used for initialization and prop-
agated in input at each step of the next session.

In HRNN Init, the session-level GRU can exploit the historical pref-
erences along with the session-level dynamics of the user interest.
HRNN All instead enforces the usage of the user representation at
session-level at the expense of a slightly greater model complex-
ity. As we will see, this can lead to substantially different results
depending on the recommendation scenario.

3.2.2 Learning. For the sake of efficiency in training, we have
edited the session-parallel mini-batch mechanism described in [8]
to account for user identifiers during training (see Figure 2). We
first group sessions by user and then sort session events within
each group by time-stamp. We then order users at random. At the
first iteration, the first item of the first session of the first B users
constitute the input to the HRNN ; the second item in each session

𝑖1,1 𝑖1,2 𝑖1,3 𝑖1,4

𝑖2,1 𝑖2,2 𝑖2,3

𝑖1,1 𝑖1,2

𝑖1,1 𝑖1,2

𝑖2,1 𝑖2,2

Session1

Session2

Session1

Session1

Session2
…

𝑖1,1 𝑖1,2 𝑖1,3
𝑖1,1 𝑖1,2 𝑖1,1

𝑖2,1 𝑖2,2

𝑖1,2 𝑖1,3 𝑖1,4
𝑖2,2 𝑖2,3 𝑖1,2

𝑖2,2 𝑖2,3

Input

Output

M
in
i-b
at
ch
1

M
in
i-b
at
ch
2

…
…

…
…U

se
r1

U
se
r2

U
se
r3

𝑖1,4𝑖1,3

𝑖1,2

𝑖1,2

𝑖2,2

Figure 2: User-parallel mini-batches for mini-batch size 2.

constitute its output. The output is then used as input for the next
iteration, and so on. When a session in the mini-batch ends, Equa-
tion 3 is used to update the hidden state of GRUusr and Equation 4
to initialize the hidden state ofGRUses for the forthcoming session,
if any. When a user has been processed completely, the hidden
states of both GRUusr and GRUses are reset and the next user is
put in its place in the mini-batch.

With user-parallel mini-batches we can train HRNN s efficiently
over users having different number of sessions and sessions of dif-
ferent length. Moreover, this mechanism allows to sample negative
items in a user-independent fashion, hence reducing the chances
of ‘contamination’ of the negative samples with actual positive
items. The sampling procedure is still popularity-based, since the
likelihood for an item to appear in the mini-batch is proportional
to its popularity. Both properties are known to be beneficial for
pairwise learning with implicit user feedback [13].

4 EXPERIMENTS
In this section we describe our experimental setup and provide an
in-depth discussion of the obtained results.

4.1 Datasets
We used two datasets for our experiments. The first is the XING
2 Recsys Challenge 2016 dataset [1] that contains interactions on
job postings for 770k users over a 80-days period. User interactions
come with time-stamps and interaction type (click, bookmark, reply
and delete). We named this dataset XING. The second dataset is a
proprietary dataset from a Youtube-like video-on-demand web site.
The dataset tracks the videos watched by 13k users over a 2-months
period. Viewing events lasting less than a fixed threshold are not
tracked. We named this dataset VIDEO.

We manually partitioned the interaction data into sessions by
using a 30-minute idle threshold. For the XING dataset we discarded
interactions having type ‘delete’. We also discarded repeated in-
teractions of the same type within sessions to reduce noise (e.g.
repeated clicks on the same job posting within a session). We then
preprocessed both datasets as follows. We removed items with sup-
port less than 20 for XING and 10 for VIDEO since items with low
support are not optimal for modeling. We removed sessions having
2https://www.xing.com/en

Dataset XING VIDEO

Users 11,479 13,717
Items 59,297 19,218
Sessions 89,591 133,165
Events 546,862 825,449
Events per item† 6/9.3/14.4 9/43.0/683.7
Events per session† 4/6.1/5.5 4/6.2/8.2
Sessions per user† 6/7.8/4.8 7/9.8/7.8

Training - Events 488,576 745,482
Training - Sessions 78,276 120,160
Test - Events 58,286 79,967
Test - Sessions 11,315 13,605

Table 1:Main properties of the datasets (†median/mean/std).

< 3 interactions to filter too short and poorly informative sessions,
and kept users having ≥ 5 sessions to have sufficient cross-session
information for proper modeling of returning users.

The test set is build with the last session of each user. The re-
maining sessions form the training set. We also filtered items in
the test set that do not belong to the training set. This partitioning
allows to run the evaluation over users having different amounts
of historical sessions in their profiles, hence to measure the recom-
mendation quality over users having different degrees of activity
with the system (see Section 4.3.1 for an in-depth analysis). We
further partitioned the training set with the same procedure to tune
the hyper-parameters of the algorithms. The characteristics of the
datasets are summarized in Table 1.

4.2 Baselines and parameter tuning
We compared our HRNN model against several baselines, namely
Personal Pop (PPOP), Item-KNN, RNN and RNN Concat:

• Personal Pop (PPOP) recommends the itemwith the largest
number of interactions by the user.

• Item-KNN computes an item-to-item cosine similarity based
on the co-occurrence of items within sessions.

• RNN adopts the same model described in [7]. This model
uses the basic GRU with a TOP1 loss function and session-
parallel minibatching: sessions from the same user are fed
to the RNN independently from each other.

• RNN Concat is the same as RNN, but sessions from the
same user are concatenated into a single session3.

We optimize the neural models for TOP1 loss using AdaGrad [5]
with momentum for 10 epochs. Increasing the number of epochs did
not significantly improve the loss in all models. We used dropout
regularization [18] on the hidden states of RNN and HRNN . We ap-
plied dropout also to GRUses initialization for HRNN (Equation 4).
We used single-layer GRU networks in both levels in the hierarchy,
as using multiple layers did not improve the performance. In order
to assess how the capacity of the network impacts the recommenda-
tion quality, in our experiments we considered both small networks

3We experimented with a variant of this baseline that adds a special ‘separator item’ to
enforce the separation between sessions; however, it did not show better performance
in our experiments.

Model Batch size Dropout Learning rate/
Momentum

RNN (small)† 100 0.2 0.1/0.1
RNN (large)† 100 0.2 0.1/0.0
HRNN All (small) 100 0.1/0.1/0.2 0.1/0.2
HRNN All (large) 50 0.0/0.2/0.2 0.05/0.3
HRNN Init (small) 50 0.0/0.1/0.0 0.1/0.0
HRNN Init (large) 100 0.1/0.2/0.2 0.1/0.1

Table 2: Network hyper-parameters on XING († RNN and
RNN Concat share the same values).

with 100 hidden units per GRU layer and large networks with 500
hidden units per GRU layer.

We tuned the hyper-parameters of each model (baselines in-
cluded) on the validation set using random search [2]. To help the
reproducibility of our experiments, we report the hyper-parameters
used in our experiments on the XING dataset in Table 2 4. Dropout
probabilities for HRNN s are relative to the user-level GRU, session-
level GRU and initialization in this order. The optimal neighborhood
size for Item-KNN is 300 for both datasets.

Neural models were trained on Nvidia K80 GPUs equipped with
12GB of GPU memory5. Training times vary from ∼5 minutes for
the small RNN model on XING to ∼30 minutes for the large HRNN
All on VIDEO. Evaluation took no longer than 2 minutes for all
the experiments. We want to highlight that training times do not
significantly differ between RNN and HRNN s, with HRNN All be-
ing the most computationally expensive model due to the higher
complexity of its architecture (see Figure 1).

4.3 Results
We evaluate wrt. the sequential next-item prediction task, i.e. given
an event of the user session, we evaluate how well the algorithm
predicts the following event. All RNN-based models are fed with
events in the session one after the other, and we check the rank of
the item selected by the user in the next event. In addition, HRNN
models and RNN Concat are bootstrapped with all the sessions
in the user history that precede the testing one in their original
order. This step slows down the evaluation but it is necessary to
properly set the internal representations of the personalized models
(e.g., the user-level representation for HRNN s) before evaluation
starts. Notice that the evaluation metrics are still computed only
over events in the test set, so evaluation remains fair. In addition,
we discarded the first prediction computed by the RNN Concat
baseline in each test session, since it is the only method capable of
recommending the first event in the user sessions.

As recommender systems can suggest only few items at once,
the relevant item should be amongst the first few items in the
recommendation list. We therefore evaluate the recommendation
quality in terms of Recall@5, Precision@5 and Mean Reciprocal
Rank (MRR@5). In sequential next-item prediction, Recall@5 is
equivalent to the hit-rate metric, and it measures the proportion
of cases out of all test cases in which the relevant item is amongst
4The source code is available at https://github.com/mquad/hgru4rec.
5We employed Amazon EC2 p2.xlarge spot instances in our experiments.

the top-5 items. This is an accurate model for certain practical
scenarios where no recommendation is highlighted and their abso-
lute order does not matter, and strongly correlates with important
KPIs such as CTR [6]. Precision@5 measures the fraction of correct
recommendations in the top-5 positions of each recommendation
list. MRR@5 is the reciprocal rank of the relevant item, where the
reciprocal rank is manually set to zero if the rank is greater than 5.
MRR takes the rank of the items into account, which is important
in cases where the order of recommendations matters.

Table 3 summarizes the results for both XING andVIDEOdatasets.
We trained each neural model for 10 times with different random
seeds and report the average results6. We used Wilcoxon signed-
rank test to assess significance of the difference between the pro-
posed HRNN models and the state-of-the-art session-based RNN
and the naïve personalization strategy used by RNN Concat.

Results on XING. On this dataset, the simple personalized popu-
larity baseline is a very competitive method, capable of outperform-
ing the more sophisticated Item-KNN baseline by large margins.
As prior studies on the dataset have already shown, users’ activity
within and across sessions has a high degree of repetitiveness. This
makes the generation of ‘non-trivial’ personalized recommenda-
tions in this scenario very challenging [1].

This is further highlighted by the poor performance of session-
based RNN that is always significantly worse than PPOP indepen-
dently of the capacity of the network. Nevertheless, personalized
session-based recommendation can overcome its limitations and
achieve superior performance in terms of Recall and Precision with
both small and large networks. HRNN s significantly outperform
RNN Concat in terms of Recall and Precision (up to +3%/+1% with
small/large networks), and provide significantly better MRR with
large networks (up to +5.4% with HRNN All). Moreover, HRNN s
significantly outperform the strong PPOP baseline of ∼11% in Recall
and Precision, while obtaining comparable MRR. This is a signifi-
cant result in a domain wheremore trivial personalization strategies
are so effective.

The comparison between the two HRNN variants does not high-
light significant differences, excluded a small (∼2%) advantage of
HRNNAll overHRNN Init inMRR. The differences in terms of Recall
and Precision are not statistically significant. Having established
the superiority of HRNN s over session-based recommendation and
trivial concatenation, we resort to the VIDEO dataset to shed fur-
ther light on the differences between the proposed personalized
session-based recommendation solutions.

Results on VIDEO. The experiments on this dataset exhibit dras-
tically different results from the XING dataset. Item-KNN baseline
significantly outperforms PPOP, and session-based RNN can out-
perform both baselines by large margins. This is in line with past
results over similar datasets [7, 8].

RNN Concat has comparable Recall and Precision with respect
to session-based RNNs and interestingly significantly better MRR

6The random seed controls the initialization of the parameters of the network, which
in turn can lead substantially different results in absolute terms. Even though, we have
not observed substantial differences in the relative performances of neural models
when using different random seeds.

https://github.com/mquad/hgru4rec

XING VIDEO
Recall@5 MRR@5 Precision@5 Recall@5 MRR@5 Precision@5

Item-KNN 0.0697 0.0406 0.0139 0.4192 0.2916 0.0838
PPOP 0.1326 0.0939 0.0265 0.3887 0.3031 0.0777

sm
al
l

RNN 0.1292 0.0799 0.0258 0.4639 0.3366 0.0928
RNN Concat 0.1358 0.0844 0.0272 0.4682 0.3459 0.0936
HRNN All 0.1334† 0.0842 0.0267† 0.5272 0.3663 0.1054
HRNN Init 0.1337† 0.0832 0.0267† 0.5421 0.4119 0.1084

la
rg
e

RNN 0.1317 0.0796 0.0263 0.5551 0.3886 0.1110
RNN Concat 0.1467 0.0878 0.0293 0.5582 0.4333 0.1116
HRNN All 0.1482† 0.0925 0.0296† 0.5191 0.3877 0.1038
HRNN Init 0.1473† 0.0901 0.0295† 0.5947 0.4433 0.1189

Table 3: Results of Recall, MRR and Precision forN = 5 on theXING andVIDEOdatasets. small networks have 100 hidden units
for RNNs and 100+100 for HRNNs; large networks have 500 hidden units for RNNs and 500+500 for HRNNs). All the networks
have statistically significant different (ssd.) results from the baselines (Wilcoxon signed-rank testp < 0.01). Networks ssd. from
RNN are in italic; HRNNs ssd. from RNN Concat are underlined. Best values are in bold. All differences between HRNNs are
significant excluded the values marked with † superscript.

when large networks are used. This suggest that straight concate-
nation does not enhance the retrieval capabilities of the RNN rec-
ommender but strengthens its ability in ranking items correctly.

However, HRNN Init has significantly better performance than
all baselines. It significantly outperforms all baselines and RNNs
(up to 6.5% better Recall and 2.3% MRR wrt. RNN Concat with large
networks). In other words, also in this scenario the more complex
cross-session dynamics modeled by HRNN provide significant ad-
vantages in the overall recommendation quality. We will investigate
on the possible reasons for these results in the following sections.
It is worth noting that HRNN All performs poorly in this scenario.
We impute the context-enforcing policy used in this setting for the
severe degradation of the recommendation quality. One possible
explanation could be that the consumption of multimedia content
(videos in our case) is a strongly session-based scenario, much
stronger than the job search scenario represented in XING. Users
may follow general community trends and have long-term interests
that are captured by the user-level GRU. However, the user activity
within a session can be totally disconnected from her more recent
sessions, and even from her general interests (for example, users
having a strong general interest over extreme-sport videos may
occasionally watch cartoon movie trailers). HRNN Init models the
user taste dynamics and lets the session-level GRU free to exploit
them according to the actual evolution of the user interests within
session. Its greater flexibility leads to superior recommendation
quality.

4.3.1 Analysis on the user history length. We investigate deeper
the behavior of Hierarchical RNN models. Since we expect the
length of the user history to have an impact on the recommendation
quality, we breakdown the evaluation by the number of sessions in
the history of the user. This serves as a proxy for the ‘freshness’ of
the user within the system, and allows to evaluate recommenders
under different amounts of historical information about the user
modeled by the user-level GRU before a session begins. To this
purpose, we partitioned user histories into two groups: ’Short’ user
histories having ≤ 6 sessions and ’Long’ user histories having 6

History length XING VIDEO

Short (≤ 6) 67.00% 53.69%
Long (> 6) 33.00% 46.31%

Table 4: Percentage of sessions in each history length group.

or more. The statistics on the fraction of sessions belonging to
each group for both datasets are reported in Table 4. Since our goal
is to measure the impact of the complex cross-session dynamics
used in HRNN wrt. traditional RNN, we restrict these analysis to
RNN-based recommenders in the large configuration. For each
algorithm, we compute the average Recall@5 and MRR@5 per test
session grouped by history length. The analysis on Precision@5
returns similar results to Recall@5, so we omit it here also for space
reasons. To enhance the robustness of the experimental results,
we run the evaluation 10 times with different random seeds and
report the median value per algorithm. Figure 3 shows the results
on XING. As the length of the user history grows, we can notice
that Recall slightly increases and MRR slightly decreases in MRR for
all methods, session-based RNN included. The relative performance
between methods does not changes significantly between short
and long user histories, with HRNN All being the best performing
model with 12% better Recall@5 and 14-16% better MRR@5 wrt.
session-based RNN. HRNN Init has performance comparable to
RNN Concat and HRNN All in accordance to our previous findings.

Figure 4 shows the results on VIDEO. Recall of all methods –
session-based RNN included – improves with the length of the user
history. MRR instead improves with history length only for RNN
Concat and HRNN Init. This highlights the need for effective per-
sonalization strategies to obtain superior recommendation quality
at session-level for users that heavily utilize the system. Moreover,
the performance gain of HRNN Init wrt. session-based RNN grows
from 5%/12% (short) to 7%/19% (long) in Recall@5/MRR@5, further
highlighting the quality of our personalization strategy. Coherently
with our previous findings, HRNN All does not perform well in

Short Long

0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

R
ec

al
l

0.1304

0.1355

0.1449

0.1504

0.1464

0.1518

0.1457

0.1505

RNN

RNN Concat

HRNN All

HRNN Init

Short Long

0.080

0.085

0.090

0.095

0.100

0.105

0.110

M
R

R

0.0860

0.0824

0.0932

0.0916

0.0985

0.0957
0.0968

0.0929

RNN

RNN Concat

HRNN All

HRNN Init

Figure 3: Recall@5 and MRR@5 on XING grouped by user
history length.

Short Long

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

R
ec

al
l

0.4999

0.5167

0.4770

0.5025

0.4753 0.4763

0.5249

0.5535

RNN

RNN Concat

HRNN All

HRNN Init

Short Long

0.30

0.32

0.34

0.36

0.38

0.40

0.42

M
R

R

0.3388

0.3306

0.3491

0.3658

0.3440

0.3308

0.3820

0.3954

RNN

RNN Concat

HRNN All

HRNN Init

Figure 4: Recall@5 and MRR@5 on VIDEO grouped by user
history length.

this scenario, and its performances are steady (or even decrease)
between the two groups.

In summary, the length of the user history has a significant
impact on the recommendation quality as expected. In loosely
session-bounded domains like XING, in which the user activity
is highly repetitive and less diverse across sessions, enforcing the
user representation in input at session-level provides slightly better
performance over the simpler initialization-only approach. How-
ever, in the more strongly session-based scenario, in which the user
activity across sessions has a higher degree of variability and may
significantly diverge from the user historical interest and tastes,
the simpler and more efficient HRNN Init variant has significantly
better recommendation quality.

4.3.2 Analysis within sessions. Here we breakdown by number
of events within the session in order to measure the impact of
personalization within the user session. We limit the analysis to
sessions having length ≥ 5 (6,736 sessions for XING and 8,254 for
VIDEO). We compute the average values of each metric groped by
position within the session (Beginning, Middle and End). Beginning
refers to the first 2 events of the session, Middle to the 3rd and 4th,
and End to any event after the 4th. As in the previous analysis, we
focus on RNN-based models in the large configuration and report
the median of the averages values of each metric computed over
10 runs with different random seeds. Results for Recall@5 and
MRR@5 are shown in Figure 5 and Figure 6 for XING and VIDEO
respectively.

On XING, the performance of all methods increses with the
number of previous items in the session, suggesting that the user
context at session-level is properly leveraged by all RNN-based

Beginning Middle End

0.120

0.125

0.130

0.135

0.140

0.145

0.150

R
ec

al
l

RNN

RNN Concat

HRNN All

HRNN Init

Beginning Middle End

0.0725

0.0775

0.0825

0.0875

0.0925

M
R

R

RNN

RNN Concat

HRNN All

HRNN Init

Figure 5: Recall@5 and MRR@5 on XING for different posi-
tions within session.

Beginning Middle End

0.475

0.525

0.575

0.625

0.675

R
ec

al
l

RNN

RNN Concat

HRNN All

HRNN Init

Beginning Middle End

0.30

0.35

0.40

0.45

0.50

0.55

M
R

R

RNN

RNN Concat

HRNN All

HRNN Init

Figure 6: Recall@5 and MRR@5 on VIDEO for different po-
sitions within session.

models. However, there is a wide margin between personalized
and ‘pure’ session-based models. Both HRNN s have similar Re-
call@5 and are comparable to RNN Concat. Interestingly, the gain
in MRR@5 of HRNN All wrt. to both RNN and RNN Concat grows
with the number of items processed, meaning that in this scenario
the historical user information becomes more useful as the user
session continues. HRNN Init has constantly better MRR that RNN
Concat, with wider margins at the beginning and at the and of the
session.

On VIDEO, the behavior within session is different. We can no-
tice that both Recall and MRR increase between the beginning and
end of a session as expected. HRNN Init exhibits a large improve-
ment over RNN and RNN Concat at the beginning of the session (up
to 10% better Recall and 25% better MRR). This conforms with the
intuition that past user activity can be effectively used to predict
the first actions of the user in the forthcoming session with greater
accuracy. After the first few events the gain in Recall of personal-
ized over pure session-based models reduces, while the gain in MRR
stays stable. In other words, after a few events, the session-level
dynamics start to prevail over longer-term user interest dynamics,
making personalization strategies less effective. However, person-
alization still provides superior ranking quality all over the session,
as testified by the higher MRR of both HRNN Init and RNN Concat
over RNN. It is important to notice that better recommendations at
beginning of a session are more impactful than later in the session
because they are more likely to increase the chances of retaining
the user. Finally, HRNN All is always the worse method, further
underpinning the superiority of the HRNN Init variant.

VIDEOXXL
Recall@5 MRR@5 Precision@5

RNN 0.3415 0.2314 0.0683
RNN Concat 0.3459 0.2368 0.0692
HRNN All 0.3621 0.2658 0.0724
HRNN Init 0.4362 0.3261 0.0872

Table 5: Results on the VIDEOXXL dataset for small net-
works. Best values are in bold.

4.3.3 Experiments on a large-scale dataset. We validatedHRNN s
over a larger version of the VIDEO dataset used in the previous
experiments. This dataset is composed by the interactions of 810k
users on 380k videos over the same 2 months periods, for a to-
tal of 33M events and 8.5M sessions. We then applied the same
preprocessing steps used for the VIDEO dataset. We named this
dataset VIDEOXXL. Due to our limited computational resources,
we could only test small networks (100 hidden units for RNN and
for 100+100 HRNN s) on this large-scale dataset. We run all RNNs
and HRNN s once using the same hyper-parameters learned on the
small VIDEO dataset. Although not optimal, this approach provides
a first approximation on the applicability of our solution under a
more general setting. For the same reason, we do not provide an
exhaustive analysis on the experimental results as done for the
smaller datasets. To speed up evaluation, we computed the rank of
the relevant item compared to the 50,000 most supported items, as
done in [8].

Results are summarized in Table 5 and confirm our previous find-
ings on the small VIDEO dataset. RNN Concat is not effective and
performs similarly to session-based RNN. On the other hand, Hier-
archical RNNs outperform session-based RNN by healty margins.
In particular, HRNN Init outperforms session-based RNN by ∼28%
in Recall@5 and by ∼41% in MRR@5. These results further confirm
the effectiveness of the HRNN models presented in this paper, and
further underpin the superiority of HRNN Init over the alternative
approaches for personalized session-based recommendation.

5 CONCLUSIONS AND FUTUREWORK
In this paper we addressed the problem of personalizing session-
based recommendation by proposing a model based Hierarchical
RNN, that extends previous RNN-based session modeling with one
additional GRU level that models the user activity across sessions
and the evolution of her interests over time.HRNN s provide a seam-
less way of transferring the knowledge acquired on the long-term
dynamics of the user interest to session-level, and hence to provide
personalized session-based recommendations to returning users.
The proposed HRNN s model significantly outperform both state-
of-the-art session-based RNNs and the other basic personalization
strategies for session-based recommendation on two real-world
datasets having different nature. In particular, we noticed that the
simpler approach that only initializes the session-level representa-
tion with the evolving representation of the user (HRNN Init) gives
the best results. We delved into the dynamics of session-based RNN
models within and across sessions, providing extensive evidences
of the superiority of the proposed HRNN Init approach and setting

new state-of-the-art performances for personalized session-based
recommendation.

As future works, we plan to study attention models and the
usage of item and user features as ways of refining user represen-
tations and improve session-based recommendation even further.
We also plan to investigate personalized session-based models in
other domains, such as music recommendation, e-commerce and
online advertisement.

REFERENCES
[1] RecSys Challenge ’16: Proceedings of the Recommender Systems Challenge, New

York, NY, USA, 2016. ACM.
[2] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-

mization. J. Mach. Learn. Res., 13:281–305, February 2012.
[3] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

On the properties of neural machine translation: Encoder–decoder approaches. In
SSST-8: 8th Workshop on Syntax, Semantics and Structure in Statistical Translation,
pages 103–111, 2014.

[4] Robin Devooght and Hugues Bersini. Collaborative filtering with recurrent
neural networks. arXiv preprint arXiv:1608.07400, 2016.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. The Journal of Machine Learning
Research, 12:2121–2159, 2011.

[6] B. Hidasi and D. Tikk. Fast ALS-based tensor factorization for context-aware
recommendation from implicit feedback. In ECML-PKDD’12, Part II, number
7524 in LNCS, pages 67–82. Springer, 2012.

[7] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. CoRR,
abs/1511.06939, 2015.

[8] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk.
Parallel recurrent neural network architectures for feature-rich session-based
recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems, RecSys ’16, pages 241–248, New York, NY, USA, 2016. ACM.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[10] Noam Koenigstein and Yehuda Koren. Towards scalable and accurate item-
oriented recommendations. In Proceedings of the 7th ACM Conference on Recom-
mender Systems, RecSys ’13, pages 419–422, New York, NY, USA, 2013. ACM.

[11] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item
collaborative filtering. Internet Computing, IEEE, 7(1):76–80, 2003.

[12] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of
recurrent neural networks for sequence learning. CoRR, 1506.00019, 2015.

[13] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for
item recommendation from implicit feedback. In Proceedings of the 7th ACM
International Conference on Web Search and Data Mining, WSDM ’14, pages
273–282, New York, NY, USA, 2014. ACM.

[14] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI
’09, pages 452–461, Arlington, Virginia, United States, 2009. AUAI Press.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations
of research. chapter Learning Internal Representations by Error Propagation,
pages 673–695. MIT Press, Cambridge, MA, USA, 1988.

[16] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In WWW:01: 10th Int. Conf.
on World Wide Web, pages 285–295, 2001.

[17] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, pages
553–562. ACM, 2015.

[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[19] Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural networks
for session-based recommendations. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, DLRS 2016, pages 17–22, New York, NY, USA,
2016. ACM.

[20] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing.
Recurrent recommender networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, WSDM ’17, pages 495–503, New
York, NY, USA, 2017. ACM.

	Abstract
	1 Introduction
	2 Related work
	3 Model
	3.1 Session-based Recurrent Neural Network
	3.2 Personalized Session-based Hierarchical Recurrent Neural Network

	4 Experiments
	4.1 Datasets
	4.2 Baselines and parameter tuning
	4.3 Results

	5 Conclusions and future work
	References

